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ABSTRACT 

The use  of ordinary filtering techniques to  suppress  s t ruc tura l  
feedback through control sys tems of l a rge ,  flexible, space boos te rs  
leads to  a difficult stabilization problem. 
ferent  approach to  the problem through the use  of dual r a t e  gyros and a 
special  bending f i l ter .  
conventional methods in the following way: 
two r a t e  gyros at  different locations on the vehicle axis ,  the rigid body 
mode i s  eliminated f rom the total rate gyro signal. 
which sti l l  contains bending information passes  into the special  bending 
fi l ter  where it is divided into separate bending mode components. 
separa te  bending mode components a r e  then weighted and fed into the 
control loop to  phase o r  gain stabilize the elastic vibrations. 

This repor t  p resents  a dif- 

This dual rate-gyro concept i s  different f rom 
By subtracting the outputs of 

This resultant signal 

These 

The purpose of this repor t  is  to present  this dual r a t e  gyro stabil iza- 

Basic trends which provide insight into the operation of the sys tem 
tion concept and to  demonstrate its application using a simplified booster 
model. 
a r e  determined by a simplified analysis which a s sumes  decoupled modes.  
F r o m  this analysis,  approximate stability bounds for  gains and gyro 
locations can be determined. 

Two possible applications of the concepts are  discussed.  In the 
f i r s t  ca se  a l inear  bending fi l ter  i s  analyzed with a representat ive elastic 
booster .  
same vehicle model. In both cases  stability was achieved for the nominal 
vehicle configuration and for  100% increase in bending mode slopes. The 
adaptive sys tem was stable up to f 2570 variation in f i r s t  bending mode 
frequency and f 407% variation in second bending mode frequency. 

In the second case  an adaptive bending f i l ter  i s  used with the 
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SECTION I. INTRODUCTION 

A problem associated with the control of large space boosters  is 
the stabilization of s t ruc tura l  feedback. When elast ic  bending modes 
are sensed with the state variables and reinforced through the control 
sys tem,  instability resul ts .  Conventional approaches to the problem 
have been through d i rec t  filtering of the state var iables  and judicious 

techniques have been quite satisfactory for  smal le r  ball ist ic miss i les ,  
but for large vehicles surh as the S z t ~ r n  o r  Nova, the bending frequen- 
c ies  a r e  so low that d i rec t  f i l tering of the measured  state var iables  
produces ei ther  phase lag and distortion of rigid body signals,  o r  ve ry  
l imited regions for acceptable sensor locations. 

s e ~ s c r  n l a r n m n n t  te n9in 3 n A  -,k;asc stabilize t-e bending i-I-lodes. Tliase 6-"' -ILU 
--.w-**v..I 

This r epor t  p resents  a different approach to the usual  gain and 
phase stabilization techniques. The basic difference in this solution 
technique is that by subtraction of signals f r o m  two r a t e  gyros,  the 
rigid body control mode is eliminated f rom the bending signal. This 
pure bending signal which remains  is then passed  through a special  
purpose filter where the separate  modes a r e  decoupled and multiplied 
by appropriate  gains and used in  the control equation to prevent 
reinforced elast ic  vibrations. Since the special  bending f i l ter  opera tes  
only on a pure bending signal, i t  does not affect the phase of rigid body, 
o r  o ther ,  signals. P rope r  selection of bending f i l t e r  gains reduces the 
coupling between bending modes a s  well a s  the requirements  to va ry  
sensor  locations for acceptable stability regions. Selection of these 
gains can  be accomplished by a root locus analysis  i f  the bending f i l ter  
is l inear.  
a r e  self adjusting. 

Another possibility i s  an adaptive f i l ter  in which the gains 
Both possibilities a r e  discussed in  this report .  

An analytical investigation of the concepts was performed using 
simplified equations. 
decoupling principle of the bending filter. F r o m  this simplified analysis ,  
relationships between rate-gyro locations, phase and gain requirements  
of both bending fi l ter  and the conventional f i l ter  were  obtained to deter-  
mine stability bounds. These relationships were  verified by application 
of the concepts to a representative model booster.  Both the l inear  and  
adaptive cases  were  simulated. Stability was  achieved .for both c a s e s  
for  %%e nominal vehicle configuration and for  100~0  increase in bending 
mode slopes. The adaptive system maintained stability for  as much as 
*2570 variations in f i r s t  bending mode frequency and *4070 variations in 
second bending mode frequency. 

These equations were  in  agreement  with the 
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11. PROBLEM STATEMENT 

Large space boosters  such as  Saturn and Nova a r e  designed to 
accomplish var ied space missions involving large payloads. These 
vehicles a re  necessar i ly  long and slender and possess  low frequency 
s t ruc tura l  bending modes in the proximity of rigid body control f r e -  
quencies. State variables , when measured  by conventional sensors  , 
a r e  contaminated by the elastic modes which, if reinforced through 
the control system, cause instability and possible destruction of the 
vehicle. 
applied to stabilize s t ruc tura l  feedback in  smal le r  miss i les ,  is 
inadequate for the l a rge r  vehicles for  the follovi ng reasons:  (1) low 
frequency bending modes cannot be sufficiently attenuated by low pass  
f i l t e rs  without severely lagging the control response, and ( 2 )  bending 
mode antinodes change during flight ti= such that optimum positioning 
of the gyros for gain stabilization i s  difficult. 

Conventional gain stabilization, which has  been successfully 

It thus becomes evident that one o r  more  low bending modes must  
Gyro locations for conventional phase stabilization be phase stabilized. 

a r e  limited to those positions at  which the bending mode slopes a r e  
smal l  in order to reduce coupling effects. Fur thermore ,  the locations 
mus t  be readily accessible.  
additional phase stability margin  since i t  i s  constrained in the following 
ways: i t  must not destabilize other bending modes o r  slosh modes,  it 
mus t  not appreciably lag the rigid body signal, and finally, it should be 
as simple and reliable a s  possible. 

The conventional f i l ter  allows little 

These problems a r e  compounded by inaccurate knowledge of the 
numerical  values of both bending mode slopes and frequencies.  

Because of the difficulties in conventional filtering and positioning, 
a different approach to gain and phase stabilization i s  considered in this 
report .  This method utilizes two ra te  gyros at  different locations along 
the vehicle axis.  
ra te  gyros to obtain a pure "bending" signal; i. e . ,  the rigid body control 
mode i s  eliminated f rom the bending modes. This bending signal is  then 
operated on by a specially designed f i l t e r  in a manner which will  gain 
stabilize or phase stabilize the elastic modes. This filter, called the 
bending filter , may be simply a combination ,of l inear  band-pass f i l ters  , 
each fi l ter  being designed to stabilize a par t icular  bending mode. On 
the other hand, a more  elaborate adaptive bending f i l ter  might be 
considered if needed. 

Basically this procedure i s  to subtract  outputs of two 
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Some prel iminary design techniques f o r  the special  bending 
fi l ter  a r e  outlined in this report .  
to the usual root locus analysis.  
general ,  more  difficult. 
presented, however, designed on the basis  of a quasi-l inear prel iminary 
analysis and a n  analog response study. 

If the f i l ter  is l inear ,  it is amenable 
Design of a n  adaptive fi l ter  i s ,  in 

A simple example of a n  adaptive fi l ter  is 

111. METHOD O F  APPROACH 

The fundamental reason  for using two r a t e  gyros is to provide a 
means of decoupling the rigid body and elast ic  feedback signals. If a 
single ra te  gyro is used, unless the location i s  a t  a bending antinode, 
the ra te  feedback contains both rigid body and elast ic  components. 
however, the outputs of two identical ra te  gyros a t  different locations 
along the vehicle axis a r e  subtracted, the resul tant  signal contains pure 
bending information. 
f i l tered in various ways without any corresponding operation on a rigid 
body signal. 
f r o m  the rigid body signal. 

If, 

This l'pure'l bending signal may be adjusted o r  

This pure (but not total) bending signal is thus decoupled 

In Figure 1 a general  block diagram of a dual ra te  gyro sys tem is 
presented. 
l inear  combination of angle-of-attack, ra te  gyro,  and position gyro 
feedbacks with an  additional adjusted bending signal @,a . 
output of a special  bending fi l ter  which operates  on the pure bending 
signal - $2. 

The control equation for  this sys tem is a conventional 

h a  is the 

The p r imary  purpose of the bending f i l t e r  i s  to decouple the 
bending modes f r o m  one another. Gyro blending sys tems without the 
bending f i l ter  cannot produce a stabilizing adjustment on one bending 
mode without a corresponding adjustment, which is in many c a s e s  
destabilizing, on other bending modes. The bending f i l t e r  s e r v e s  to 
separate  the modes and thus minimizes the interaction between different 
modes. Each mode can,  to an extent, be stabil ized independently of 
the others .  

F o r  this reason a preliminary investigation of the sys tem can be 
considerably simplified by an  analysis which t r ea t s  each mode independ- 
ently. This "quick look" analysis based on simplified decoupled 
equations can provide insight as to gain and phase bending fi l ter  
charac te r i s t ics  required to stabilize a bending mode for par t icular  gyro 
locations. This analysis is presented in the following section. 
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System Dynamics Measured 
-I Variables 

Command Fi l ter  Actuator 

Control Equation 

I 

?ba 

Bending Fi l te r  
(Linear  o r  Adaptive) 

' $ 1  - tp2) + 
4 4 - 

Figure  1. GENERAL BLOCK DIAGRAM O F  DUAL GYRO SYSTEM 
WITH BENDING FILTER 
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A. Pre l iminary  Design Concept - 

The following simplified analysis a s sumes  a single general  bending 
mode. In this  treatment coupling influences between this bending mode 
and the rigid body a r e  not considered. Using this 'Iciecoup1ing"sssumption 
simplified formulas  can be developed which approximate the closed loop 
frequency and damping of the bending mode in a neighborhood of the open 
loop bending pole. These formulas a r e  quite useful in determining 
~ p p ~ ~ ~ i ~ l ~ t ~  gain 2nd p h s e  r m n l l i r e m e n t s  of the f i l t e rs  t o  stabil ize the 
bending mode. Other effects such as stability of f i l t e rs  o r  interaction 
between fi l ters a n d  rigid body cannot be determined by this analysis.  
These effects a r e  seen in a root locus analysis presented in the "resul ts"  
section of this report .  (The decoupled mode analysis is useful, however, 
in a region near  the open loop bending pole and in this  region is in 
agreement with the complete root locus analysis. ) 
discussion on decoupled mode analysis the reader  should consult 
ReferenLe 1. 

-y--- ---- - - - -  

F o r  a m o r e  detailed 

1. Derivation 

Using the notation of the Laplace Transform the following 
equations can be written: 

The control equation is 

where the sensor  outputs a r e  
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and the output of the bending fi l ter  is 

where B(S) is the t ransfer  function of the bending f i l ter .  

The engine gimbol angle6 is given by 

where F(S)  and A(S) denote the respective t ransfer  functions of the 
conventional f i l ter  and actuator. 

The bending mode equation is 

5% B ( S )  53 (S2 + 25, WBS + w2) q ( S )  = B 

Equations (1)  can be combined with equation ( 2 )  and p ( S )  may 
then be written a s  the sum of rigid and elast ic  components, 

( 3 )  

where 

a r e  introduced to  shorten notation. 



A = a Y ’  + b  Y; 
0 O P  0 
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(5) 

According to  the decoupling assumption PR(S) m a y  be used with a 
s e t  uf x=igid body- dj-fi&rlic eq-fi&tiofia -*ith rJD+) cor;si&r&-j r;s r; 

reinforcible disturbance. 
prcblem. 
equations ( 3 )  and (4) and treating PR(S) as a forcing function. 
the two problems can be separated whenever the amplitudes of the 
bending oscillations a r e  smal l  as  is the case  for low s t ruc tura l  gains. 

This constitutes the rigid body control 
g Likewise the flexible body proble-m can  he s t d i e d  bycopAbinin 

In general ,  

Considering only the flexible body problem, equations ( 3 )  and (4) 
yield the following vibration equation: 

Y N  
+ BB F(S) 

53 

Associated with equation (6 )  is the following charac te r i s t ic  
equation : 

o r  

I- - 
I- 1 
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where 

s i n  gF(S) + cos gF(S) I jgF(S> 
F(S) = RF(S)e 

and 

and the following relationships exist between A1(S) and B(S): 

RA(S) s i n  gA(S) = - al(Yi  - Y;) %(S) s i n  gB(S) 

It is  known f rom the decoupling assumption that the character is t ic  
equation ( 7 )  is valid for determining a root in the vicinity of the open 
loop bending pole, where s t ruc tura l  feedback is small .  
in this region i s  of interest ,  equation ( 7 )  may  be replaced by a second 
degree equation which contains approximately the same root. 
can be accomplished i f  the region of interest  is  sufficiently small  that 
the magnitude and phase contribution to  equation ( 7 )  due to f i l t e rs  and 
the actuator can be assumed invariant throughout this region. 
m o r e  erg< < w B  in this region, and the substitution S = j w B  can be 
made in the t ransfer  functions of f i l ters  and actuator. 

If only the root 

This 

Fur the r -  

Using the above simplification and relations of the form (8)  
equation (7 )  becomes : 
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In o rde r  to  avoid solving an equation with complex coefficients 
fur ther  use  is made of the assumption that in the t r ans fe r  functions for  
the actuator and f i l t e rs ,  S = jw,. 
replaced S / w g .  

Thus in  the above equation j m a y  be 
The following quadratic equation resu l t s :  

A sing 
BB RF(jWB) ‘Os ‘gF(jwB) + @A(jwB)) + 0 w F 

B 

I 

Y N  

% 2Cgwg + 

y R R  N R F ( j W R > R A ( j W R )  - _ _  - , 

B 
W 

1 +- 
MB 

The roots of this equation a r e  given by S = a ’  t j u t  where 

and 
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2.  Stability Bounds 

In order  to  stabil ize the bending mode, the p a r a m e t e r s  
R F ,  g,, @A and A, must  be chosen such that u' < 0. 
assumption requi res  that the denominator of u' can never be z e r o  the 
general  stabilitycondition of a decoupled bending mode can be stated 

Since the decoupling 

as follows: 

N(gF, RFy RA) < 0 

where by definition 

If the stability condition can be satisfied by a choice of pa rame te r s  
such that 

then the bending mode i s  said to  be "gain" stable.  
not satisfied, and N < 0 anyway because of a proper  choice of the phase 
@B and 8, and the sensor  positions (which determine the algebraic signs 
of the slopes Y i ,  Y i ,  and Y ? ) ,  the mode is "phase" stable. 

If this  condition i s  

If a conventional stabilization sys tem without the bending f i l ter  
and with only one r a t e  gyro is used then RB = 0 and 

yv R = alYi + bo A 

= 0' from ( 9 ) .  
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This conventional system can gain stabilize only b y  choosing either R F  
small or  by finding sensor  locations such that Y i  and Y '  a r e  small .  
Phase  stabilization can be accomplished only be proper  choice of 8, 
and the sensor  locations. 
two additional pa rame te r s ,  RB and m a y  be used. Thus values of 
RA and 8, where RA = R A ( R ~ ,  8B) and 8, = $l,(RB, 8 ~ )  can be chosen 
to stabilize the mode regard less  of the values of Y:, R,, and 8, 

P 

If the dual gyro stabilization system is used, 

provided the two ra te  gyros a r e  properly spaced su>h that Y '  # Y:' 1 2' 

In order  to  establish stability bounds of the bending fi l ter  phase G B  aiid @iii RB, it . .  is &dvar1tageous to wi-iie N in terriis of tIizse yiiarltitizs* 

Rewriting N in the following form: 

.--[I 
(15) and substituting from Equation 8: 

Or in another form: 

(17) 
*O 

b Y  
V cos gF + s i n  o v  +- 

F a  B 
F r o m  this equation a lower bound of 1 RBI can be determined such 

that the stability condition N <  0 is satisfied. 
for RB 
considered. 

An upper stability bound 
exists i f  the full equations including coupling effects a r e  

This upper bound cannot be determined by Equation ( 1 7 ) .  

The stability condition may  be fur ther  simplified if the r a t e  gyros 
a r e  not located near  antinodes, that is, Y i  o r  Y i  a r e  of the same  (or  
g rea t e r )  o rder  of magnitude as Yv ,  Yb, Y b ,  and CB%. 
assumption the approximate stability condition is as follows: 

Under this 

a- - 
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In this expression Y p  may be ei ther  positive o r  negative, depending on 
the particular bending mode and on whether o r  not bending modes a r e  
normalized a t  the nose o r  tail  of the vehicle. If bending is normalized 
at the nose,Yp> 0 for  the f i r s t  mode and Y p  < 0 for  the second. 
however, bending i s  normalized at  the tail  Y > 0 for  all bending modes.  

If, 
-I 

B 
The inequality (18) determines a stability region in which the 

boundary is determined f rom the .following equation: 

provided Y i  # Yl 2 

Equation (19) is quite useful in providing a "quick look" analysis 
of the type of bending f i l ter  needed for  various bending modes.  It i s  
evident from this equation that if I Y i  1 > pi I , a necessary  condition 
for  the stability bound kB to  be a minimum i s  the condition: 

gB = - 

Of perhaps grea te r  importance is the fact that this is the condition for 
which the stability bound RB is leas t  sensit ive to  changes in OB. The 
exact values of the phases  @F and f l B  at the bending mode frequencies 
cannot be known by the fi l ter  designer for  severa l  reasons.  
dynamics of the two r a t e  gyros may  not be exactly the same, and the 
bending mode frequency may not be known with a high degree of accuracy. 
Thus condition (20) i s  often a good design c r i te r ion  since it provides the 
grea tes t  tolerance for  variations in either (bF o r  flB.  Equation (20) will 
thus be  denoted as the optimum phase condition. 

The 

A sketch of Equation (19) i s  presented in F igure  2-A. An a rb i t r a ry  
@F is assumed for the sketch. 
without loss of generali ty since the effect of / Y i I >  IYiI 
replacing @, by 0, f 180". 

stability region i s  I RB(<IRB I . 
deflections a r e  normalized at the nose of the vehicle Y p <  0 and the 
stability regions a r e  reve lsed .  
the tail ,  however, Yo  has  the same sign for  all bending modes and stability 
regions a r e  not reversed.  

It is fur ther  assumed that I Y i l > l  Y >  1 
It is seen f rom (18) that fo r  Y '  < 0 the f i r s t  

F o r  the second bending mode if bending 

If bending deflections a r e  normalized at 

can be seen  by 

bending mode i s  stable fo_r the region I RBI>/ RBI , F o r  Y1 Il > 0 the 
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- Note: Bending d e f l e c t i o n s  
are assumed normalized a t  
nose f o r  t hese  curves.  It 
i s  assumed t h a t  IY' Figure 2-A 11 7 1y;t 

RB 

2nd Mode s t a b l e  i f  Yi > 0 2nd Mode s t a b l e  i f  Yi > 0 

1st Mode s t a b l e  i f  Yi40 
2nd Mode s t a b l e  i f  Y ' > O  

1 

Figure 2-B 
RB 

1st Mode s t a b l e  i f  Y' < 0 
1 

2nd Mode uns t ab le  i f  Y ' > O  
1 

2nd Mode s t a b l e  i f  Y' > O  
1 

- Note: Optimum phase cond i t ion  
( 0 ~  = - &) i s  assumed f o r  
t h i s  curve .  

// - -1 - .  
- 1800 0 

1st Mode 

2nd Mode 

1800 

t a b l e  i f  Yi < 0 

F igure  2: The General S t a b i l i t y  Bound Curves 
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Figure 2-B shows the minimum stability bound (optimum phase 
condition) as  a function of Q, Stable and unstable regions a r e  

F' 
indicated. It i s  easily seen f r o m  this figure that for the optimum phase 
condition and Y '  < 0 for  f irst  mode o r  Y '  > 0 for second mode, a choice 

1 1 Y ! 

F' provides stability for all values of 0 1 
RB> y l  - y l  

1 2  
of RB such that 

However, if Y i  > 0 for the f i r s t  mode o r  Y '  <. 0 fo r  the second, stable 
and unstable regions of Figure 2-B a r e  reversed  and R 

chosen such that R < - B Y i - Y '  
2 

fur ther  be shown that even i f  the optimum phase condition is not satisfied,  
similar stability bounds independent of 0 

1 
m u s t  be B 

in o rde r  to stabilize for  all 8 It can 
'i 

F' 

can be established provided F 

- !JF -90" < QB < - !JF + 90" 

and 
Y: - Y$ # 0. 

The preceding argument shows an  advantage of the bending f i l ter .  
a n  R 
and O F ,  there is  freedom to design the conventional f i l ter  to  stabilize 
s losh o r  other bending modes. 

Since 

F and @ 
€3 B can be picked to stabilize a bending mode regard less  of R 

3.  Adaptive Stabilization 

In o rde r  to reduce the amount of a p r io r i  knowledge of bending 

i s  self-adjusting such that i t  automatically seeks values inside the 
mode data,  the bending fi l ter  can be made adaptive. 
if R 
stab?e regions of Figures  2-A o r  2-B. 
stability. Let R B  = R (o-') have the following properties:  R is  a 
bounded function of s d i l i t y .  Initially R = R . If the bending equation 
i s  s table ,  R 
equation is unstable R 
then levels off a t  that value. 

This can  be done 

Thus R becomes a function of 
B 

B 
0 

remains constant at  the ini?ial value R . If the bending 
increases  until a stabilizing value is reached, 

B 0 

B 

B In order to design a stabilizing system with a n  adaptive gain R 
with the above propert ies ,  three problenzs a r e  encountered. 
problems a re  a s  follows: 

These 

1). How can stability o r  instability of a bending mode be sensed? 
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2 ) .  How can Ro be selected such that increasing R B  always 
passes  through a stable region? 

3 ) .  Can the nonlinear effect of a changing R B  destabilize ? 

The f i r s t  problem i s  not difficult for a dual gyro sys tem since a 
pure bending signal can be obtained by subtracting the outputs of the two 
r a t e  gyros.  The rectified output of the bending signal provides stabil i ty 
inforrr?atinn. -An increasing signal indicates instability; a decreasing o r  
constant signal indicates stability. 

In problem two, the choice of R, depends on how much adaptivity i s  
needed, Assume,  for  the f i r s t  case ,  it i s  des i red  to  stabilize without a 
careful analysis of gyro locations or f i l t e r  phases .  
Ro a negative number of sufficiently large magnitude that 

F o r  this case  choose 

1 . It can be seen f rom Figure 2-A that if 8, # - @F*900, 
y'l 

Ro < - 1  Y; - Yi 
an increasing RB will intersect  the stability bound curve kB, thus always 
passing - through a region of stability. 
the RB curve,  RB (u') should stop increasing and R 
Such an adaptive sys tem should stabilize for  any gyro positions, with the 
single res t r ic t ion that adequate separation exis ts  between the values 
Y i  and Y' 

If the region of stability i s  below - 
never intersects  RB. B 

2' 

Assume,  in the second case  that 0, is between - 90" and 9 0 " ,  and 
@B # - gF*90". Since i s  known within these l imits ,  it can be seen  
f rom Figure 2-B that for Ro = 0 ,  an 
and will pas s  through a stability region. 
f i r s t  case ,  the single res t r ic t ion is that Y i  and Yi a r e  not approximately 
equal. 
F o r  this condition the sys tem may  be either stable o r  unstable,  depending 
on the effects of the position gyro and the angle of attack me te r .  

increasing RB c r o s s e s  the curve B 
In this case ,  a s  well as in the 

Another possible res t r ic t ion for both cases  is that 8, # OFf9O0. 

The third problem includes the following considerations.  Lf the 
response of RB i s  too slow, the bending vibrations m a y  build up to  
dangerous proportions before a stable region i s  reached. If, on the 
other hand, the response i s  too fast ,  R g  may  overshoot the stability 
region 
not rea l i s t ic .  
were  determined on the basis  of linearity of Equation (6 ) .  
a function of stability, the l inearity assumption i s  not s t r ic t ly  valid. 
Finally, a stabilizing function RB(u ' )  i s  not unique, and cer ta in  type 

passing into a region in which the decoupled mode equations a r e  
Fur the rmore ,  the stability bounds of Figure 2-A and 2-B 

If RB becomes 
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functions may be more desirable than others .  
method of quick analysis of the effects of various R 
be useful. This can be accomplished by analyzing Zquation (6) with 
the equation 

F o r  these reasons ,  a 
functions should 

This i s  a general adaptivity equation which indicates that R 
determined by measuring q. 

(cr') is B 

F o r  simplicity a s sume  8 = 0"  , RF = 1 and the optimum phase 
condition such that 0 = 0". &e sys tem to be investigated is: B 

Stability of Equation (23) can ve ry  easily be investigated using a 
small analog computer such as the TR- 10. The bending equation can be 
wired on the computer and severa l  type functions for ~ ( q )  
successively simulated on the computer.  Using this method, simplicity 
of implementation can  be used as a c r i t e r i a ,  as  well  a s  absolute stability. 

can be 

In order to per form a mathematical  investigation of (23) the 
following general form should be used. 

(24) 
2 6 + g(fi)fi + w' = F( t ) .  

In this equation F( t )  is a forcing function, g( f i )  a nonlinear damping, 
and U' a constant. 
the c l a s s  of functions g( fi ) for  which Equation (24) is  stable. 

The general  adaptive bending problem depends upon 

F o r  certain special  functions g( ( ) ,  a n  analytic solution to 
Equation (24) may be found. 
setting g( i)  = ph(fi)h(i)  where c1 << 1 , and taking a variational 
equation about B(t), where 8( t )  i s  a solution of the l inear  equation: 

An approximate solution may  be found by 

+ Wf2q = F ( t ) .  
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F o r  a t reatment  on this method, s ee  Reference 2 o r  3 .  

B. Application of the Concepts 

1. Stabilization Philosophy 

In o r d e r  to apply the concepts previously discussed to a 
par t icular  booster some stabilization philosophy must  be adopted. 
application to a representative C-I booster, the following stabilization 
philosophy was  used: A conventional low pass  f i l ter  i s  used to gain 
stabilize the third and higher bending modes. 
may be either l inear o r  adaptive, is used only to stabilize the f i r s t  and 
second bending modes. 

F o r  

The bending f i l ter ,  which 

A block diagram of the bendingfilter is presented in Figure 3 .  
The bending f i l ter  consists of two band-pass f i l t e rs ,  B and B in 
para l le l  and tuned to the f i r s t  and second bending modes,respectively,  
such that the sum of the weighted outputs of the two f i l ters  is ha. 
A Bode plot and t ransfer  function of one of the band pass  f i l t e rs  is 
presented in Figure 4. 
i s  not unique. 
might be acceptable. Fur thermore ,  an  RLC band-pass f i l ter  might 
per form better than the RC fil ter.  
for  study because it is easily realizable, and the phase changes l e s s  
with respec t  to frequency. 

1 2 '  

It should be pointed out that this band-pass i i l t e r  
F o r  stabilizing the f i rs t  bending mode, a low-pass f i l ter  

The RC f i l ter  was used a s  a basis  

One way to increase the adaptivity of the sys tem is to use tracking 
f i l t e rs  for B and B Such an arrangement ,  however, may be 
unnecessary.  Computer studies presented in the next section indicate 
that variations in w1 and w2can be tolerated for  f i l ters  of the form of 
F igure  3 .  
sufficient. 

1 2' 

Simple time programming of f i l t e r  pa rame te r s  may be 
F o r  a discussion on tracking f i l t e rs  see Referer8ce 4. 

Another way of making the system adaptive has  a l ready been 
discussed in the simplified analysis.  K and K adjust  automatically 
to stabilize the f i r s t  two bending modes. Assume that for K = 0 and 
K 2  = 0 ,  the senso r s  a r e  located such that a t  l ea s t  one bending mode is 
unstable. If, for  example, the second mode i s  unstable, K should 
automatically increase f rom zero  to some positive stabilizing value, 
and level  off at  that value, stabilizing the bending mode. 

1 2 
1 

2 

The problem that remains i s  to implement the concept electronically. 
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This involves determining some means of sensing stability when the 
gain has  increased to the proper  level, then retarding the gain such 
that i t  does not continue to increase beyond the stability region. 
many possible schemes can accomplish this,  the adaptive gain logic of 
Figure 5 is perhaps the s implest  mechanization. 
wave rectifier,  f i r s t  o rde r  smoothing fi l ter  and a multiplier.  

Although 

It consists of a full 

The function of the adaptive gain logic of Figure 5 i s  to produce 
(or K ) which is proportional to the magnitude of the f i r s t  a gain K 

(o r  second) bending mode; thus an increase in bending causes  a , p r o -  
portionate gain increase which tends to stabilize. 
that a decrease in  bending causes  a decreasing gain which tends to 
destabilize. The resultant effect i s  that K o r  K set t les  to a value 
which produces a stable limit cycle in the &ending signal. According 
to Figure 2-A of the simplified analysis,  this corresponds to R 
located on the stability bound curve k According to a root locus 
interpretation, this corresponds to a gain K 
operating point i s  on the j w axis.  

1' 2 

It is seen, however, 

2 

B 
B' such that the second mode 

2 

Although a l imit  cycle i s  often une?sirable,  i t  is found that by 

A quick 
adjusting the pa rame te r s ,  K and T, of the adaptive gain logic, the 
magnitude of the l imit  cycle can be made extremely small .  
way of determining the effects of K and T on the l imit  cycle is to program 
the logic of Figure 12 a s  Equation (22)  of a simplified analysis  with 
Equation (23) on a smal l  analog computer. 

2. Basic Ec-iations 

Bending stabilization techniques using the l inear bending 
filter and also the adaptive bending fi l ter  were  investigated. 
equations which were  used for  the two studies a r e  l is ted a s  follows: 

The basic 

1). Rigid Body 

m 

QR + c1 a, + c2 f5 = 0 

a = 'pR + aw - i / v  
R 
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2). Elastic Bending 

Y N  

'n+ 2SBnWBn % Bn n %n 
+ w 2 1 j  - m p  - 

3 ) .  Sensor Outputs 

4).  F i l te r  and Actuator 

F ( s )  = 
s 2 + 2c, 
(r) W 

- s  + 1  
F F 

5) .  Control and Bending Filter Equations 

n = 1, 2 ,  3 
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K 1  = K l ( @  ) 7  for the adaptive -- I39 I 

sys tem 
K 1  = K ; ( t ) ?  f o r  the l inear  sys tem 

K2 = K d t ) )  
i or 

where 

and 

These equations were  used to  determine a charac te r i s t ic  equation 
for  the l inear system f rom which root locus data was obtained by solving 
for roots  of this equation by a large digital computer. 
were  a l so  programmed for  t ime response studies on an analog computer 
for  both the l inear and adaptive systems. F o r  both systems /3 and /3 
saturation effects of f 7 "  and f 15"/sec,respectively,were included. 
The resu l t s  of these studies a r e  presented in the following section. 

The equations 

IV. RESULTS 

A. The Linear System 

The preceding basic  equations were used with obsolete Saturn 
S 

C-1 data. 
to t ime  of maximum dynamic pressure.  The f i r s t  and second r a t e  gyros 
were  assumed located at stations 1400 and 600 respectively. 
locations were  chosen in agreement with the condition, a s  seen f rom the 
simplified analysis,  that Y; is not approximately equal to Yi for either 
f i r s t  o r  second bending modes. The position gyro location was assumed 
at the G&C compartment at station 1500. 

The coefficients were  assumed fixed with values corresponding 

These 

As seen  f rom the basic  equations, 



24 

a second order RC network was assumed a s  a conventional f i l ter  for  
the feedback signal p . The break point chosen was w = 15, 
sufficiently low to gain stabilize the third bending mode, but not the 
f i r s t  and second modes. 
f i l t e r s  a r e  a s  follows: 

C F 

Nominal values for break points in the bending 

w = 25 w = 40 
2A a3 

The effect of the dual gyro system with bending fi l ter  can be seen 
f rom a comparison of F igures  6 and 7. 
d iagram of a conventional system with a single ra te  gyro located a t  
station 140G whereas  Figure 7 i s  a root locus diagram of the dual 
gyro system with the other ra te  gyro a t  station 600. The fi l ter  gain 
K i s  the parameter  with which the roots vary ,  all other pa rame te r s  
being fixed. The nominal operating point K = 1 corresponds to those 
points a t  which the t races  a r e  slashed by shor t  line segments.  I t  can 
be seen from Figure 6 that the operating point for the conventional 
system is  unstable for the second bending mode and marginally phase 
stable for the f i r s t  bending mode. 
by selecting bending fi l ter  gains of K = 1 to be used with 
the dual gyro system. In this system the second mode is gain stable and 
the first mode i s  phase stable with much l a rge r  phase and gain margins .  
The most  cr i t ical  points in the sys tem a r e  now the third bending mode 
and fi l ter  operating points, both of which have gain margins  of 1.8. 

Figure 6 is a root locus 

F 
F 

In Figure 7 this situation is cor rec ted  
= . 5  and K 

1 2 

The parameters  used in  Figure 7 a r e  considered nominal, but 
other values may be used as well. 
these parameters  upon the operating points of the most  c r i t i ca l  modes 
of the system is  presented in the following table. 
extremes a re  assumed for  each selective parameter  of the system and 
the corresponding frequency and damping of c r i t i ca l  modes tabulated. 
In determining the effect of each off-nominal pa rame te r ,  the other 
parameters  were  fixed a t  nominal values. 

A l i s t  of the effects of Trariations in 

In this table two 
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It is significant f rom this table that the pa rame te r s  in the bep.ding 
fi l ter  cause no appreciable change upon the rigid body operating point, 
which i s  approximately the same value as  for  the conventional single 
gyro system. It is fur ther  seen that for  the nominal vehicle, K can 
range between 0 and 1.5, K 

and wZB remains stable. Wide variations in  W ~ A ,  wIB, wPA, 
can a l so  be tolerated. 
to 12 the phase lag effect on the rigid body can be seen f rom the 
increase  in the rigid body operating frequency. Raising WF above 15, 
however, has the effect of decreasing the third mode gain margin.  
Break points in the bending fi l ter  a l so  affect the third mode, but 
apparently can be lowered below 6 before coupling effects begin to 
reduce rigid body performance. 

1 
between . 6 5  and 1 . 7 5  and the sys tem 

2 

If the conventional f i l ter  break point i s  reduced 

L 

Using the nominal values of the selective gains,  as determined 
from the preceding root locus analysis ,  a n  analog response study was 
conducted. 
modes i s  shown in Figure 8. which is  plotted in 
Figure 8 is  assumed the same for a l l  other analog plots in the study. 
All three bending modes of the nominal dual ra te  gyro system of Figure 
8 a r e  stable for this disturbance. 

The response of a nominal vehicle model with three bending 
The disturbance (Y 

W 

In order to provide for inaccuracies in  es t imates  of bending mode 
slopes and frequencies,  analog runs were  made for off-nominal values 
of these parameters  using the same selective gains a s  in Figure 8. 
the condition shown in Figure 9A, the f i r s t  and second bending mode 
slopes were increased by a factor of 2 a t  both ra te  gyro locations. 
Stability was achieved for this condition. 
a l so  doubled, that mode i s  no longer gain stable since the bending fi l ter  
was designed to stabilize only the f i r s t  two modes. 
f i l ter  break point is lowered to provide m o r e  attenuation a t  higher 
frequencies,  a l l  three modes a r e  stable. 
in F igure  9 B  with wF= 12. 

F o r  

If the third mode slope i s  

If the conventional 

Such a condition is presented 

Figure 10 depicts the response for off-nominal values of f i r s t  
and second bending mode frequencies. 
second modes a r e  decreased by 10% and 1570 respectively. 
these frequencies a r e  increased by the same percentages.  
analog runs demonstrated that the frequencies may be increased much 
further than the indicated 10’7’0 and 1570, but the negative 1570 deviation 
in second bending mode establishes a stability bound for decreasing 932. 
If a grea te r  tolerance than *I570 w is required,  i t  may be possible to B2 

In Figure 10A the f i r s t  and 
In Figure 10B 
Fur ther  



29 

find other values of the selective gains than nominal,  o r  other  gyro 
locations than were  chosen for  this study. Still another possibil i ty 
consis ts  of making the bending filter adaptive. 

B. The Adaptive System 

It has  been previously s ta ted that a bending mode might be s tabi-  

The "increasing gain" stabilizing effect can be seen  
l ized adaptively by increasing a bending f i l ter  gain until stabil i ty of the 
mode is sensed.  
f r o m  root locus plots. 
for  which K 
this f igure txat a z e r o  established by the second mode band-pass  f i l ter  
pas ses  through a proximity of the second bending mode pole as the gain 
K is increased.  F o r  the region of K in which the f i l ter  z e r o  is  v e r y  
near  the bending mode pole, the mode is gain stable.  
in F igure  12 .  It i s  seen  f rom this sketchthat  for  the z e r o  nea r  the 
bending pole, the locus from thef i l ter  poles does not flow into the ze ro ,  
but is replaced by the bending mode locus which flows into the zero.  
i s  s een  f rom the sketch that for some values of K the en t i re  second 

2'  
mode locus is in the left half plane, and that the operating point i s  
sufficiently near  the bending pole to  be gain stable.  

Figure 11 presents  a locus of "zeros"  (points 
increases  and K = 0. It can be seen  f r o m  = m )  as K2 

1 

2 2 
This  i s  i l lustrated 

It 

In o rde r  for  K and K to  increase to  stabilizing values the adaptive 
gain logic of Figure 5 is used. Analog response  studies using the bas ic  
equations for  the adaptive sys t em were conducted. 
both K and K w e r e  given the initial value z e r o  and then they automati-  
cally adjusted to  positive stabilizing values.  
a r e  thought to  be conservative since sudden l a rge  adjustments in K or 
K 

1 2 

F o r  these  studies 

These response  studies 

a r e  not s o  likely during an  actual booster  flight as continual sma l l  

1 2 

1 

a c? justments  in these p a r a m e t e r s  over long t ime intervals .  

Fo r  the initial condition K =K =O and for  the s a m e  wind input a s  10 2 0  
in the previous l inear  study, responses  were  obtained fo r  a range of 
of values of K/.rand 
effects of K / T  

cvcle magnitude L maximum peak-to-peak bending amplitude P and 
Y ) '  r l '  the overshoot ra t io  M of the adaptive gain, for  both f i r s t  and secord 

bending modes.  
plot the curves  in F igures  13 through 17. 

T. This study was performed to  de te rmine  the 
and T on th ree  cri t ical  pa rame te r s :  the bending l imit  

Data obtained f rom these  response studies was used to  

Examination of the curves in  Figures  13  through 17 revea ls  the 
following charac te r i s t ics :  F o r  the second mode er?all values of T and 
K / T  cause  l a rge  l imit  cycle magnitudes and peak bending oscil lations.  
As T and K / T  increase ,  both P and L e p p r o a c h  smal l  constant values.  
It i s  observed that no l imit  cycle exists for  the f i r s t  bending mode, the 
r eason  being that the f i r s t  mode is slightly phase s table  for K = 0. It 

rl 

1 
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i s  seen that M increases  with bothK/Tandz 
important that M not be excessively la rge .  
can mean that the peak value of K o r  K 
bound. For this reas0nKl.r and T should e small. If the requirements ,  
M < 1. 0 and L < . 1 ,  a r e  acceptable, a wide range of K/? and a can be 
found. 
for both bending modes.  

for  both modes.  
A l a rge  value of M 

It is 
o r  M 

1. . 2 
is near  the upper stability 

% 1 

The values used for the following study a r e s  = 8 and a = 5 a 

Figure 18 presents  a response of the adaptive stabilization sys tem.  
It can be seen that as the second mode bending oscillations increase  in 
magnitude, K increases ,  stabilizing the bending and reaching a peak 
value just  l ess  than 1. approaches a steady s ta te  value of 
.65 ,  the bending set t les  to a smal? l imit  cycle.  
f igure,  the effects of the bending oscillations on cuR, 
a lmostimperceptible.  F o r  this case  M = . 6 6 ,  M2 = . &, P = . 13, 
P = . 1 2 ,  L = 0 ,  and L = .04. 

2 
Then as K 

As  seen f rom the 
cp , and 0 is 

1 tll 
r12 4 r12 

Off nominal conditions a r e  presented in Figures  19 through 22 .  
Figure 19 shows the response when f i r s t  and second mode slopes a r e  
doubled. For this case  K peaks above 1, but stability is  maintained. 
In Figure 2 0 ~  

F 
mode. 
and 22  show the wide range ofw 
the adaptive system. 

1 
i s  lowered to  12 to stabil ize the off-nominal third 

All th ree  mode slopes a r e  doubled for  this case.? F igures  2 1  
andwB2which can be tolerated using 

B1 
Stability can  be maintained for  *2570 variations 

Si and *40% variations inw 
i w B l  

V. CONCLUSION 

The purpose of this study was to  investigate a dual gyro system 
with bending fi l ter  and to  per form a prel iminary feasibility analysis 
of this concept on a representat ive elast ic  booster.  
equations were used to establish stability bounds and basic t rends.  
These trends w e r e  verified by root locus and response studies using 
the basic  equations and approximate Saturn C-I data. Stability was  
achieved for the representat ive configuration and using cer ta in  off - 
nominal elastic body pa rame te r s  f o r  r a t e  gyro locations at stations 
1400 and 600. 

Simplified 

It shollld b e  pointed out that no attempt was made  ei ther  to optimize 
gyro locations or  \ending fi l ter  pa rame te r s  in this study but r a the r  to 
i l lustrate  the concepts. 
of the techniques. The method of adaptation, for  example, might be 
improved by choice of an entirely different adaptive gain logic. 

Better re,sults m a y  be obtained b y a  modification 

Fur thermore ,  it is  not known whether o r  not l a rge r  vehicles such 
as Saturn C-5  o r  Nova can be stabil ized with the same philosophy as 
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presented here .  
redesign the bending f i l t e r  using a low-pass f i l t e r  instead of a band- 
pass  f i l ter  for  f i r s t  mode stabilization. 
might be to use two band-pass fi l ters to stabilize the second and third 
bending modes and phase stabilize the first by judicious sensor  
locations. 
on the par t icular  problems encountered by specific low bending 
frequency e las  tic boosters  . 

If difficulty i s  encountered, i t  may be possible to 

A more  pract ical  philosophy 

Other combinations a r e  possible;  the bes t  approach depends 

In summary ,  the resul ts  of this study indicate the following 
possible advantages for using dual rate gyros and bending f i l ter :  

1). Coupling effects between elast ic  and rigid body modes a s  
well a s  between separate  e las t ic  modes can  be reduced by adjustment 
of bending fi l ter  gains. Since the modes can  be t reated independently 
of one another,  insight can be obtained by a simplified analysis .  

2 ) .  Since the gains of the bending fi l ter  can  be chosen to , 
stabil ize the low bending modes,  more freedom i s  allowed to design 
the conventional f i l ter  f rom the standpoint of s losh considerations 
and other bending modes. 
designed. 

A simpler conventional f i l ter  can  be 

3). Since the bending fi l ter  operates on a pure bending signal, 
i t  does not produce phase lag of the rigid body response.  
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